
DOI 10.1140/epja/i2003-10160-9

Eur. Phys. J. A 20, 443–455 (2004) THE EUROPEAN
PHYSICAL JOURNAL A

Origin of the pseudospin symmetry in the relativistic formalism
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Abstract. The grounds on which the nuclear pseudospin symmetry (PSS) is supposed to be based are
analysed within the relativistic mean-field framework. A connection between the mechanisms responsible
for the spin-orbit and pseudospin-orbit splittings is shown. The nature of the PSS is investigated through
an extended Dirac equation which allows a generalization of the PSS breaking term. It is shown that
the PSS breaking in real nuclei can be explained as a result of a non-perturbative transformation from
non-physical solutions of the Dirac equation, which satisfy exactly the PSS, to the physical ones. The PSS
breaking term produces important, though qualitatively similar, effects on both states of a pseudospin-
orbit doublet. The similarity of these effects increases with the number of nodes of the small component
of the Dirac spinor of these states.

PACS. 24.10.Jv Relativistic models – 21.60.Cs Shell model – 21.10.Pc Single-particle levels and strength
functions – 24.80.+y Nuclear tests of fundamental interactions and symmetries

1 Introduction

The pseudospin symmetry (PSS) is a symmetry of mid-
weight and heavy nuclei [1–20]. Two single-particle states
labelled by “a” and “b” make a pseudospin-orbit dou-
blet (PSD) if their radial–, orbital–, and total–angular-
momentum quantum numbers are related by the equa-
tions nrb = nra−1, lb = la +2, and jb = ja +1 = la +3/2,
respectively. In the limit of exact PSS these two states are
degenerate. This symmetry is observed experimentally in
both spherical and deformed nuclei and has been intro-
duced in nuclear physics in refs. [1,2]. In the pseudospin
formalism, the same pseudo-orbital angular momentum
l̃ = (2j − l) is assigned to both states of a PSD.

An essential observation has been made in ref. [5],
where the author realized that l̃ is identical to the rel-
ativistic quantum number l′, i.e., to the orbital angular
momentum of the small component F (r) of the nucleon
Dirac spinor. In recent years, this observation has moti-
vated an active investigation on the nature of the PSS in
the framework of the Dirac phenomenology [6–20].

In the relativistic Hartree formalism, a nucleon in the
nucleus is considered as moving in a combination of two
very strong fields: an attractive scalar field ΣS and a re-
pulsive vector field Σ0 that are almost equal in magnitude,
so that one has |ΣS + Σ0| � |ΣS − Σ0|.
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In ref. [5], it has been shown that, in the limit ΣS +
Σ0 = 0, the PSS becomes exact and, in refs. [10–13], it
has been argued that the exact PSS would be realized in
the limit of vanishing pseudospin-orbit potential (PSOP).
This latter condition is somewhat less restrictive than the
first one. Thus, the explanation of the PSS in the frame-
work of the single-particle relativistic models has been
based on the two different but related following hypothe-
ses: 1) The magnitude of ΣS +Σ0 is small enough to con-
sider the PSS slightly broken in nuclei [5–9]. 2) The PSOP
is small enough to justify the approximate PSS observed
in PSDs of many nuclei [11–13].

In relation with hypothesis 1), one must be aware that,
in the limit ΣS + Σ0 = 0, there are no bound states and
one could consider as degenerate not only the pseudospin
partner states but also many other couples of states. Fur-
thermore, bound and unbound states are very different to
consider both type of states to have a similar behaviour
in relation with the PSS. Thus, it seems quite risky to
base the approximate PSS observed in finite nuclei on the
smallness of the quantity |ΣS + Σ0|. In fact, as we have
shown in ref. [18], this hypothesis is not justified.

In relation with hypothesis 2), we have also shown
that, although single-particle bound states do exist in the
limit of small PSOP, the PSS obtained in this limit has
a mathematical rather than physical character [18], the
effect of the PSOP being very strong. In particular, it
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drastically determines the behaviour of the wave function
in the nuclear surface, where the PSOP becomes diver-
gent. Thus, the PSS cannot be justified by the smallness
of this potential either.

In refs. [17,20], we have shown for the 40Ca nucleus
that the PSS can be understood as the result of a compli-
cated cancellation between different contributions to the
single-particle energy of the terms entering the equation
for the small component F of the Dirac spinor. The re-
sulting pseudospin-orbit splitting depends on the concrete
properties of the single-particle potentials where the nucle-
ons are supposed to move [16–18]. All this shows that the
PSS has a dynamical character in the classical sense [21].
We have also pointed out that the exact PSS requires the
F wave functions of two pseudospin partners to be some-
what different rather than identical. Also, in ref. [18], we
have given a number of arguments explaining the sim-
ilarity between the two F wave functions belonging to a
PSD and have established, at a qualitative level, a connec-
tion between the mechanism responsible for the spin-orbit
splittings and for the breaking of the PSS. In this work,
we shall deepen this mechanism. In ref. [20], we discuss
new features that the relativistic Hartree-Fock approach
brings about in relation with the PSS.

The aim of this work is: A) to establish a comparison
between the mechanisms responsible for the spin-orbit and
pseudospin-orbit splittings; B) to determine the influence
of the spin-orbit interaction on the PSS; C) to show that
the two commonly accepted statements given above and
labelled as 1) and 2) fail to describe PSS in finite nuclei.
Here, we shall be more precise in some arguments already
pointed out in ref. [18]. D) To analyse in detail how the
observed PSS can be achieved in atomic nuclei starting
from a hypothetical situation of exact PSS.

In sect. 2, we give the basic equations describing the
spin-orbit and pseudospin-orbit couplings. In sects. 3 and
4, we study the connection of the PSS with the strength
of the spin-orbit interaction and with the magnitude of
the ΣS + Σ0, respectively. In sect. 5, we investigate the
role of the symmetry breaking κ terms in the spin-orbit
and pseudospin-orbit schemes. In sect. 6, we provide new
arguments to explain the PSS, in particular, to under-
stand the similarity between the F components of the two
pseudospin partners. Finally, in sect. 7, we summarize our
main results and conclusions.

2 Basic equations for the spin-orbit and
pseudospin-orbit couplings

If the radial parts of the upper (big) and lower (small)
components of the nucleon Dirac spinor are designated
as (G/r) and (F/r), respectively, the Dirac equation for
these functions, in the relativistic Hartree approximation
(RHA), has the following form (the tensor contribution of

the vector mesons being neglected):

d
dr

G(r) = −κ
r G(r) + W F (r),

(1)
d
dr

F (r) = V G(r) + κ
r F (r).

In this equation, κ ≡ (2j+1)(l−j) = j(j+1)−l̃(l̃+1)+1/4,
whereas

V ≡ [ΣS + Σ0 − ε] , W ≡ [2M + ΣS − Σ0 + ε] , (2)

and ε is the single-particle energy (SPE) of a nucleon with
bare mass M .

From the Dirac equation (1), one can get the two fol-
lowing equivalent second-order differential equations for
the G and F components of the nucleon Dirac spinor:

Gκ[G] ≡ −G′′ +

[
W ′

W

(
G′

G
+

κ

r

)

+
l(l + 1)

r2
+ V W

]
G = 0 , (3)

Fκ[F ] ≡ −F ′′ +

[
V ′

V

(
F ′

F
− κ

r

)

+
l̃(l̃ + 1)

r2
+ V W

]
F = 0 , (4)

where the quantity

V W = 2MV + 2εΣ0 + (Σ2
S − Σ2

0) − ε2 (5)

represents an effective state-dependent potential.
Equations (3) and (4) have the same structure and

they look very similar. The main difference between them
is that in eq. (3) there appear the terms proportional to
W ′/W and to l(l+1), whereas in eq. (4) W is replaced by
V and l by l̃. Formally, eqs. (3) and (4) establish a strong
similarity between the spin-orbit (LS) coupling scheme
and the PSS formalism. This similarity calls for studying
the relationship between them. In relation with a spin-
orbit doublet, we shall say that it exhibits spin symmetry
if the two states of this doublet have the same energy.

The quantum number κ takes different values for the
two states of each spin-orbit and pseudospin-orbit doublet.
Thus, in both eqs. (3) and (4) the term proportional to κ
explicitly breaks the degeneracy of the two partners of re-
spective doublets. The large spin-orbit splitting observed
in many cases in comparison with the small splitting of
the PSDs, suggests that the κ term plays a more impor-
tant role in eq. (3) than in eq. (4). However, as we shall
see, what actually happens is just the opposite.

Equations (3) and (4) do not have exactly the form
of a Schrödinger equation because of the terms contain-
ing the first derivatives G′ and F ′, respectively. In eq. (3),
the term with G′ can be eliminated by making the trans-
formation G̃ = G × W−1/2. The resulting equation for
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Table 1. The self-consistent εi and non–self-consistent ε∗i SPEs
of the states corresponding to the neutron PSD in the 40Ca nu-
cleus obtained with the relativistic parameter sets NL-SH [22]
and NL3 [23]. The quantities εa − εb and ε∗a − ε∗b represent the
splitting of the PSD corresponding to the self-consistent and
non–self-consistent calculation, respectively.

Set State (i) εi εa − εb ε∗i ε∗a − ε∗b

2s1/2 (a) −16.17 −15.09
NL-SH 0.33 1.93

1d3/2 (b) −16.50 −17.02

2s1/2 (a) −16.96 −15.73
NL3 −0.79 0.65

1d3/2 (b) −16.17 −16.38

G̃ exhibits a central and spin-orbit potentials, which are
energy dependent. In eq. (4), the corresponding transfor-
mation would be F̃ = F × V −1/2. However, for bound
states, the potential V becomes zero for some value r0 of
r [V (r0) = 0] in the nuclear surface and this transforma-
tion is not defined at r0. This fact establishes an essential
difference between eqs. (3) and (4) and is a first sign sug-
gesting that the term proportional to V ′/V is important
in eq. (4).

3 The PSS and the spin-orbit interaction

Connections between the pseudospin symmetry (PSS) and
the spin-orbit interaction have been studied in several
papers [4,15,18]. As has been discussed in ref. [18], for
the states of a pseudospin-orbit doublet (PSD) one has
ja = la + 1/2, whereas jb = lb − 1/2. Thus, in a simple
shell model approximation, in which the nucleons move in
a central and LS potentials, the LS term shifts the single-
particle energies (SPEs) εa and εb in opposite directions. It
means that the splitting of PSDs crucially depends on the
strength of the LS interaction. In this non–self-consistent
picture, two states of a PSD can be forced to be degener-
ate if the LS interaction is adequately chosen. However,
this degeneracy cannot be reached by choosing the mag-
nitude of ΣS + Σ0 and maintaining, at the same time,
the nucleus stability. For self-consistent models, the rela-
tionship between the LS and pseudo-LS schemes is a bit
more complicated than for the simple shell models, due to
additional contributions to the LS splittings from other
terms in equation for G than the LS term, as a result of
the self-consistent procedure.

To be more precise, we have worked out calculations for
the 40Ca and 208Pb nuclei within the parameter sets NL-
SH [22] and NL3 [23], used in the relativistic mean-field
approximation as standard sets. We have focused our at-
tention on the neutron pseudospin-orbit doublets to avoid
the effect of the Coulomb interaction, which influences
somewhat the proton PSDs. Tables 1 and 2 summarize
the corresponding results for the neutron PSDs of the 40Ca
and 208Pb nuclei, respectively. The single-particle energies
ε and ε∗ represent, in the same order, the self-consistent
and non–self-consistent results, being the spin-orbit inter-

Table 2. The same as table 1 but for the 208Pb nucleus and
set NL-SH [22].

PSD State (i) εi εa − εb ε∗i ε∗a − ε∗b

2s1/2 (a) −41.43 −41.06
1 3.23 3.83

1d3/2 (b) −44.66 −44.89

2p3/2 (a) −30.91 −29.99
2 4.25 5.55

1f5/2 (b) −35.16 −35.55

2d5/2 (a) −20.62 −18.88
3 4.13 6.26

1g7/2 (b) −24.75 −25.14

3s1/2 (a) −17.96 −17.26
4 0.91 1.62

2d3/2 (b) −18.87 −18.88

2f7/2 (a) −10.80 −7.98
5 3.08 5.91

1h9/2 (b) −13.88 −13.89

3p3/2 (a) −7.85 −6.25
6 0.83 1.72

2f5/2 (b) −8.68 −7.98

action switched off in the latter case. More precisely, ε∗ has
been obtained by solving the Dirac equation (1) with the
self-consistent values of ΣS and Σ0 but making arbitrarily
ΣS − Σ0 = 0 in W . To keep the overall spectra ε∗ and ε
with a similar density of levels, we have also contracted the
range of ΣS and Σ0 in V by making the transformation
r → 0.8 × r. Thus, we can establish a significant depen-
dence of the PSD splittings on the spin-orbit interaction.

Our results for the 40Ca nucleus indicate that the ex-
act PSS needs a bit larger spin-orbit interaction than that
obtained in the NL-SH set, whereas the opposite is true
in relation with the NL3 set. When the LS interaction
is switched off, the PSS is significantly deteriorated for
the NL-SH set, whereas for the NL3 set the PSS is satis-
fied with a similar precision, although the ordering of the
pseudospin partners is reversed. Taking into account that
the spin-orbit splitting for the 1d states is around 7 MeV,
one could expect a more drastic breaking of the PSS when
the spin-orbit interaction is switched off. If it is not like
that it is, in part, because, as the spin-orbit potential is
switched off, the modification of the energy of the 1d3/2

state is very small, in contrast to the stronger modification
of the energy of the 1d5/2 state. The fact that the pseu-
dospin partner of the 1d3/2 state is an s state, which is
not affected by the LS interaction, is also crucial to avoid
a stronger degradation of the PSS.

In the 208Pb nucleus, the exact PSS for all neutron
PSDs would require a large LS interaction for both the
NL-SH and NL3 sets. Thus, when the LS interaction is
switched off, the PSS is significantly degraded in all cases1.

1 On the contrary, all PSDs would reach a good degree of
degeneracy if the LS interaction were increased by about a
factor 2 (for example, replacing ΣS − Σ0 by 2 × (ΣS − Σ0) in
W and r by 1.4× r to get, on average, a similar single-particle
spectrum).
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The results discussed in this section show the close
relation between the PSS and the strength of the LS in-
teraction, as well as the dynamical character of the PSS
(according to the classical interpretation of a dynamical
symmetry [21]).

4 The PSS∗ in finite nuclei and the ΣS + Σ0

potential

As is considered in refs. [5–9], the exact PSS with εa = εb

and Fa = Fb can be obtained if ΣS + Σ0 is neglected in
the V potential in eq. (1). Hereafter, we shall denote this
particular type of symmetry by PSS∗, and we reserve the
notation PSS for the more general case in which only the
equality εa = εb is required. Unfortunately, the condition
ΣS + Σ0 = 0 is incompatible with real nuclei since it
prevents the possibility of bound states.

As we have pointed out in ref. [18], if the reason
for the quasi-degeneracy (εa 	 εb) and similarity of the
wave functions (Fa 	 Fb) of both states of a PSD were
the small value of |ΣS + Σ0| (as claimed in refs. [5–9]),
then, this property should be also exhibited by all PSDs,
and the similarity of the wave functions should be reg-
ularly intensified as |ΣS + Σ0| decreases (ΣS − Σ0 re-
maining unchanged). However, as we shall see later, this
behaviour is not a general rule. Let us analyse first the
quasi-degeneracy of the two states of a PSD.

4.1 The condition εa � εb

What one observes when |ΣS + Σ0| decreases is that the
binding energy of the states b with κ > 0 decreases faster
than that of their respective pseudospin partners a with
κ < 0 does. Therefore, as long as εb < εa, εa and εb ap-
proach each other as |ΣS + Σ0| decreases, whereas, when
εb > εa, the opposite is true and, in this case, εa and εb

separate from each other.
To be more precise, we have worked out calculations in

which the potential ΣS+Σ0 entering V in eq. (2) is consid-
ered as a variable quantity. The different values used in the
calculations have been obtained from the self-consistent
ones by multiplying them by the reduction factor RF . In
fig. 1, we have represented, for the 40Ca nucleus, the SPEs
of both states of the neutron PSD and their differences as
functions of RF . It can be observed that for εb < εa, the
quantity |εb−εa| decreases as the RF factor decreases, but
after the crossing point, when εb > εa, |εb − εa| monotoni-
cally increases as RF decreases, even more rapidly than a
linear function. Thus, when εb = 0, εa is still smaller than
−1 MeV. All that happens though, on average, the whole
SPE spectrum is compressed as the RF factor is reduced.
Similar results can be also found, at a qualitative level,
for the NL3 set and for nuclei heavier than the 40Ca one.

The ordering of all PSDs of the 208Pb nucleus with
the NL-SH and NL3 sets corresponds to the case εb < εa.
Thus, when |ΣS +Σ0| decreases, the energies of the states
of a PSD approach each other until they become either

Fig. 1. The SPEs εa and εb of the two states a = 2s1/2 and
b = 1d3/2 of the neutron PSD of the 40Ca nucleus and the
difference εa − εb as functions of the reduction factor RF of
ΣS + Σ0 in the potential V for the NL-SH set [22].

a)

b)

Fig. 2. a) The physical (solid and dashed curves) and the non-
physical (dash-dotted and dotted curves) wave functions F for
the neutron PSD of the 40Ca nucleus with the NL-SH set. The
two non-physical functions F are solutions of eqs. (10) with
κ̄ → κ−

a and κ̄ → κ−
b or with κ̄ = κa and κ̄ = κb (as the

physical states) and the condition F (r0) = 0. b) The same as
a) but for the neutron PSD 1 of the 208Pb nucleus.
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degenerate or εa = 0. In the first case, a further reduction
of |ΣS +Σ0| produces an increasing of the difference2 |εb−
εa|. This relation between |εb − εa| and |ΣS + Σ0| also
corroborates the dynamical character of the PSS.

These results can be understood by taking into account
that the a states with κ < 0 have larger values of the wave
function F in the nuclear surface than the b states with
κ > 0 (see figs. 2a), b), 3a)-c)). Thus, the decreasing of
the quantity |ΣS + Σ0|, which takes larger values inside
the nucleus than in the surface, affects more the b states
than the a ones.

It is worth recalling that the results just discussed for
the nuclear case are quite different from what happens
for a relativistic particle moving in two identical poten-
tials ΣS and Σ0 of the Coulomb type [5]. In this case,
when the magnitude of |ΣS +Σ0| is reduced, the energies
of both pseudospin partners increase (become less nega-
tive) and always approach each other. This behaviour is
due to the fact that, for potentials of Coulomb type, the
single-particle level density becomes infinite as the energy
ε approaches the continuum. Then, as |ΣS+Σ0| decreases,
the two states of a PSD remain always bound and r0, the
value of r where the κ term is singular, increases in a sim-
ilar way for both states. Then, the pseudospin breaking
term becomes less important as ε approaches the contin-
uum and the energies of the pseudospin partners become
closer to each other.

The behaviour of the energy splittings of the pseudospin
partners as functions of |ΣS + Σ0| in finite nuclei dis-
cussed in this section is in clear contradiction with what
one would expect if the approximate PSS observed in finite
nuclei were a consequence of the smallness of the quan-
tity |ΣS + Σ0|, as has been claimed in earlier investiga-
tions [5–9] on this subject (see hypothesis 1) in sect. 1).

4.2 The condition Fa � Fb

In figs. 2a), b) and 3a)-c), we have represented the small
components F of the different neutron PSDs appearing in
the 40Ca and 208Pb nuclei. As we have noticed in ref. [18],
the main differences between the two components F of a
PSD appear for r � r0. This fact can be attributed to the
divergence at r0 of the factor V ′/V appearing in the PSS
breaking term (see the κ term in eq. (4)). In refs. [5–9],
the similarity of the two F components of a PSD is also
based on the fact that the quantity |ΣS + Σ0| is small
(the two conditions εa 	 εb and Fa 	 Fb being closely
related). However, near the singularity point r0, the ratio
V ′/V behaves as (r− r0)−1 and shows a weak dependence
on ΣS + Σ0 only through the value of r0, which in finite

2 In the second case, if the strength of the LS interaction
is increased until the two states of the corresponding PSD be-
come degenerate for a given potential |ΣS + Σ0|, a further
reduction of |ΣS +Σ0| produces also an increasing of |εb − εa|.
For example, if we consider the 5th PSD of the 208Pb nucleus,
starting from a situation in which εa � εb � −10 MeV and the
|ΣS + Σ0| is monotonically reduced, one gets εa < −1 MeV
when εb = 0.

Fig. 3. a) The physical (solid and dashed curves) and the
non-physical (dash-dotted curve) wave functions F for the
4th neutron PSD of the 208Pb nucleus with the NL-SH set.
The non-physical functions F are solutions of eqs. (10) with
κ̄ → κ− or with κ̄ = κ (as the physical states) and the con-
dition F (r0) = 0. Notice that, since the b̄ and ā states for
the same value of κ̄ are proportional to each other, the same
(dash-dotted) curve can be used to represent Fā and Fb̄ al-
though with different norms. In this figure, the state b̄ = 2d3/2

is not normalized. b) The same as a), but for the neutron PSD
5. c) The same as a), but for the neutron PSD 6.
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nuclei lies, in practice, in a narrow region of about 2 fm in
the nuclear surface. Thus, the effect of the value of ΣS+Σ0

in the most important region of the nucleus (around r0)
in relation with the condition Fa 	 Fb, seems to be quite
reduced. All this suggests that the similarity Fa 	 Fb (and,
consequently, the PSS∗) cannot be justified by the fact that
|ΣS + Σ0| is small either.

As we have seen above, in nuclei, contrary to what hap-
pens in atoms, the splitting of a PSD does not decrease
monotonically as the quantity |ΣS +Σ0| is reduced. Thus,
as |ΣS + Σ0| decreases and the binding energy of one of
the states of a PSD approaches zero, its corresponding
wave function spreads more and more all over the space,
whereas that of its partner, which has still a finite bind-
ing energy, remains localized. Then, for two nuclear pseu-
dospin partner states a and b such that εa or εb is near
the continuum, the similarity between Fa and Fb degrades
as |ΣS +Σ0| decreases, which seems to be in clear contra-
diction with the hypothesis that the condition Fa 	 Fb in
nuclei is a consequence of the smallness of |ΣS + Σ0|, as
is claimed in refs. [5–9].

4.3 Role of the LS interaction in the relationship
between the PSS∗ and the ΣS + Σ0 potential

New arguments to support the conclusions made in
sects. 4.1 and 4.2 can be found taking into account the ef-
fect of the LS interaction on the PSS discussed in sect. 3.
To facilitate the comprehension of this point, let us des-
ignate those models with realistic values of ΣS − Σ0 as
models of type I and those with ΣS−Σ0 = 0, which means
that there is no LS interaction, as models of type II.

The result of exact PSS∗ obtained in refs. [5–8] for the
case ΣS +Σ0 = 0 is valid for models of type I as well as for
models of type II. However, as we have discussed in sect. 3
(see tables 1 and 2), an adequate spin-orbit interaction is
important to get approximate PSS (mainly for the PSD
with εa > εb, as it happens in heavy nuclei).

Thus, we have models of type II that, although with
ΣS +Σ0 = 0 also predict exact PSS∗, with realistic values
of ΣS + Σ0 (as those used to obtain the results denoted
with the symbol ∗ in tables 1 and 2) appreciably spoil
the PSS in finite nuclei. This shows that the degree of
fulfilment of the PSS essentially depends on factors differ-
ent from the magnitude of ΣS + Σ0, in particular, on the
strength of the LS interaction.

To see a more drastic effect of the LS interaction on
the PSS, instead of switching off the LS interaction, as
was made in sect. 3, we could go further and reverse the
LS interaction by, for example, making the replacement
(ΣS − Σ0) → −(ΣS − Σ0) in W in eq. (2) (we shall call
these models of type III). Thus, the level ordering of a
spin-orbit doublet (SOD) would be reversed and the PSS
would be degraded even more than in models of type II,
although, if we made ΣS + Σ0 = 0, we would get also
exact PSS∗ as in models of type I and II.

Actually, for models of type III, if one considers a SOD
with the states a, a′ and another one with the states b, b′,
so that the states a and b form a PSD, it will happen,

saving exceptions, that |εa − εb| > |εa′ − εb′ | (see a shell
model scheme). Thus, the two states with the closest val-
ues of the energies would be no longer those belonging
to the same PSD with similar F components, but their
respective spin-orbit partners with F components having
different number of nodes.

Then, the approximate PSS observed in certain PSDs
of some nuclei cannot be explained by the condition that
the potential |ΣS+Σ0| is small, because keeping this quan-
tity the same in models of type I, II and III, the degree of
validity of the PSS in real nuclei is spoiled progressively
and significantly as ΣS − Σ0 increases from the negative
realistic values in models of type I to the positive unreal-
istic values in models of type III. All that shows that the
LS interaction plays an essential role in understanding
the PSS. Thus, the magnitude of ΣS − Σ0, which deter-
mines the spin-orbit interaction in finite nuclei, seems to
be much more important in explaining the PSS than the
fact that ΣS 	 −Σ0, in clear contradiction with what has
been stated in refs. [5–9] and has been commonly accepted
by the scientific community.

5 Role of the κ term in eqs. (3) and (4)

The characteristics of the κ term in eqs. (3) and (4), which
hereafter we shall refer to as G-κ and F -κ terms, respec-
tively, are determined by the behaviour of the correspond-
ing factors W ′/W and V ′/V . Whereas W contains the nu-
cleon rest mass and is a large quantity (W > |ΣS − Σ0|)
everywhere inside the nucleus, V becomes zero for a bound
state at r = r0 in the nuclear surface. Thus, W ′/W is a
finite quantity inside the nucleus, whereas V ′/V becomes
divergent at r0. These features of the V and W potentials
determine the effects of the G-κ and F -κ terms, respec-
tively, for values of r � r0 in the nuclear surface.

It is well known that in the Dirac equation and, conse-
quently, in eqs. (3) and (4) only integer values of κ, both
negative (κa) and positive (κb), have physical meaning.
However, from a purely mathematical point of view, one
may also consider two equations with the same structure
of eqs. (3) and (4) but allowing a continuous variation of
the parameter κ (always maintaining the physical values
of l and l̃ corresponding to the integer physical κ values).
This real parameter will be designated as κ̄ in what fol-
lows. Equations (3) and (4) with κ replaced by κ̄ can be
also obtained from the Dirac equation (1) by replacing V
and W by V̄ and W̄ , respectively, defined by the equations

V̄ (r) = V (r) + ∆V (r), ∆V (r) = −W ′

W 2

κ − κ̄

r
, (6)

W̄ (r) = W (r) + ∆W (r), ∆W (r) =
V ′

V 2

κ − κ̄

r
. (7)

Notice that the replacement W → W̄ is equivalent to
the replacement M → M̄ , where M̄ is defined as

M̄(r) = M + ∆M(r), ∆M(r) =
V ′

2V 2

κ − κ̄

r
. (8)
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The Dirac equation including ∆V reads

d
dr

G(r) = −κ

r
G(r) + W F (r),

(9a)
d
dr

F (r) = (V + ∆V ) G(r) +
κ

r
F (r).

Here, κ can only take the physical integer value κa or
κb, for the state a or b, respectively. The real parameter κ̄
appears only in ∆V .

The equivalent Schrödinger equation for the G compo-
nent can be written as

Gκ̄[G] ≡ −G′′+
[
W ′

W

(
G′

G
+

κ̄

r

)
+

l(l + 1)
r2

+ WV

]
G = 0.

(9b)
The Dirac equation including ∆W reads

d
dr

G(r) = −κ

r
G(r) + (W + ∆W ) F (r),

(10a)
d
dr

F (r) = V G(r) +
κ

r
F (r),

and its equivalent equation for the F component is given
by

Fκ̄[F ] ≡ −F ′′+

[
V ′

V

(
F ′

F
− κ̄

r

)
+

l̃(l̃ + 1)
r2

+ V W

]
F = 0.

(10b)
Hereafter, we shall use the labels “ā” and “b̄” for the

eigenstates of eqs. (9) and (10) with κ = κa < 0 and κ =
κb > 0, respectively. If κ is not specified, it will represent
either κa or κb.

5.1 The G-κ term

The effects of the G-κ term on the G wave function and on
its corresponding eigenvalue can be estimated by allowing
a free variation of the parameter κ̄ in eqs. (9). We have
worked out calculations for the 40Ca nucleus with the NL-
SH set. The results for the neutron SPEs εā and εb̄, with
ā = 1d5/2 and b̄ = 1d3/2, which form a spin-orbit doublet,
are represented in fig. 4 as functions of κ̄. As expected,
εā and εb̄ are identical for the same value of κ̄. They are
continuous functions of κ̄, which cross the physical eigen-
values εa and εb (black dots). The effect of the G-κ̄ term
on the SPE is to shift the value of the single-particle en-
ergy from εā = εb̄ for κ̄ = 0 to εa or εb in a continuous
way as κ̄ varies from κ̄ = 0 to κa or κb, respectively.

Figure 5 shows the space distribution of the Gā and Gb̄

functions. For the same value of κ̄, they are proportional to
each other (rather than identical). They also vary contin-
uously with κ̄. For κ̄ = κ, they coincide with the physical
functions: Gā = Ga and Gb̄ = Gb. For κ = 0, Gā and
Gb̄ lie between Ga and Gb. These results mean that the
G-κ (or G-κ̄) term, though the LS interaction is consid-
ered large in nuclear physics, behaves, qualitatively, as a
perturbative term.

Fig. 4. The SPEs εā and εb̄ as functions of κ̄, for the 1d neutron
spin-orbit doublet of the 40Ca nucleus and the NL-SH and NL3
sets (the two lines are identical). The dots represent the SPEs
corresponding to the physical states.

Fig. 5. The Gā ≡ Ga and Gb̄ ≡ Gb wave functions, solutions
of eqs. (9), with κ̄ = κa (or κ̄ → κ∓

a , solid line) and κ̄ = κb (or
κ̄ → κ∓

b , dashed line), respectively, for the 1d neutron spin-
orbit doublet of the 40Ca nucleus and the NL-SH set. The
dash-dotted curve represents the Gā and Gb̄ functions for the
case κ̄ = 0 (they are proportional to each other, the 1d3/2 state
is not normalized to simplify the figure).

5.2 The F-κ term

To see the effect of the F -κ term in detail, we can proceed
as we did to study the effect of the G-κ term on eq. (3).
We can solve, now, eqs. (10) for real values of κ̄. Firstly,
one can see quite easily that for κ̄ 
= κ the solutions of eqs.
(10) with finite values of G(r0) and G′(r0) or F ′′(r0) must
satisfy the conditions F ′(r0) = F (r0) = 0. This result, by
itself, means that the F -κ̄ term drastically conditions the
behaviour of the F wave function for r � r0. Thus, this
term, as a consequence of its divergence at r0, plays an
essential role in eqs. (10).

For κ̄ = κ, we can find two types of analytic solu-
tions of eqs. (10) quite different: the physical solutions,
with normal asymptotic behaviour, and the non-physical
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Fig. 6. The non-physical SPEs εā and εb̄ as functions of κ̄, for
the neutron PSD of the 40Ca nucleus (ā = 2s1/2 and b̄ = 1d3/2)
and sets NL-SH (solid line) and NL3 (dashed line). The physi-
cal SPEs corresponding to the same PSD are also represented
for sets NL-SH (dots) and NL3 (stars).

ones, which satisfy the conditions3 F ′(r0) = F (r0) = 0,
and correspond, by continuity, to the solutions obtained
in the limit κ̄ → κ− (in relation with eqs. (10), we shall
use the notation ā and b̄ only for these non-physical solu-
tions). Both types of solutions with κ̄ = κa and κ̄ = κb

are shown in figs. 2a), b) for the neutron PSDs of the 40Ca
and 208Pb nuclei, respectively, and the NL-SH set. These
figures show that the two physical F wave functions of
each PSD are quite similar in the inner region (r � r0),
whereas they become quite different near the singularity
point. As is expected, the difference between the physi-
cal and non-physical functions becomes larger for r � r0.
Similar results are presented for other PSDs of the 208Pb
nucleus in figs. 3a)-c).

For real values of κ̄ 
= κ, eqs. (9) admit physical and
non-physical solutions4, whereas eqs. (10) only admit non-
physical solutions due to the singularity of the quantity
V −1 at r0. This fact establishes a crucial difference be-
tween the role of the G-κ̄ and F -κ̄ terms in eqs. (9) and
(10), respectively.

The influence of the F -κ̄ term on the F function is
also reflected in fig. 6, where we have represented the SPE
ε as a function of κ̄ for the neutron PSD of the 40Ca nu-
cleus, i.e., for the states ā = 2s1/2 (κ = κa = −1) and
b̄ = 1d3/2 (κ = κb = 2) and parameter sets NL-SH and
NL3. This figure is equivalent to fig. 1 in ref. [18], the nu-
merical uncertainties being minimized. Strictly speaking,
the results for both types of solutions (physical and non-
physical) discussed in this section are not connected. As
we have noticed in ref. [18], the two non-physical states ā
and b̄ for the same value of κ̄ are degenerate. However, we

3 Notice that the condition F (r0) = 0 is artificially imposed
in this case (it also leads to F ′(r0) = 0), whereas for κ̄ �= κ,
necessarily, the condition F (r ≥ r0) = 0 has to be satisfied.

4 With a similar non-standard asymptotic behaviour as the
non-physical F functions.

should remind that, for κ̄ > κ, ∆W (and W̄ ) becomes a
very large negative quantity near r0 and the Dirac equa-
tion cannot properly describe the single-nucleon states.
Thus, the degeneracy found for the states ā and b̄ with
κa < κ̄ is a mathematical rather than a physical result.

If we compare figs. 2a) and 5, we observe that the big
components Ga and Gb of the spin-orbit doublet (SOD)
of the 40Ca nucleus differ from each other even less than
the Fa and Fb components of the PSD do, though the
LS splitting is much larger than the pseudospin-orbit
splitting. These results also reflect the perturbative
character of the G-κ term in eq. (9b) in contrast to
the non-perturbative behaviour of the F -κ term in eq.
(10b). Actually, because, near the singularity point r0,
V ′/V ∼ (r − r0)−1, which is an odd function of r − r0,
the F -κ term produces a relatively smaller difference
between the energies of the two states of a PSD than
between their respective wave functions Fa and Fb. This
means that the difference of the contributions to the SPE
of some terms entering eq. (4), other than the κ term, for
both states of a PSD is larger than the splitting of the
PSD itself [17,20]. This allows, in particular, the exact
PSS (εa = εb) to be compatible with Fa 
= Fb [16,17].
All this suggests that it is more appropriate to associate
the pseudospin symmetry to the degeneracy of two states
of a PSD than to the similarity of the corresponding
F wave functions. For the spin simmetry, however, the
two corresponding possibilities are equivalent due to the
perturbative character of the symmetry breaking term.

6 Nature of the PSS

In sect. 5, we have seen that to understand the PSS it
is necessary to consider the effect of the F -κ term on
the F wave function near the singularity point. For r0

lying in the nuclear surface, one could expect, in princi-
ple, that the effect of this term decreases with the nuclear
density at r0. Thus, for PSDs with values of r0 such that
ρ(r0) � ρ(0) the effect of this term should be small and,
consequently, the two states of a PSD should be almost de-
generate. In other words, one could expect slightly broken
PSS for PSDs with weakly bound states, independently of
the values of ΣS and Σ0 inside the nucleus. Unfortunately,
the best examples of the PSS observed experimentally in
nuclei do not correspond to this limiting situation and re-
main to be explained. Notice that, in nuclear physics, on
the contrary to the atomic case, it is not possible, in gen-
eral, to approach by a continuous reduction of |ΣS + Σ0|
both levels of a PSD to the continuum simultaneously (see,
for example, fig. 1). This is because the density of the SPE
spectrum in nuclear physics remains finite even when ε ap-
proaches the continuum.

To investigate the origin of the similarity of the small
components of the two states of a PSD found in relativis-
tic calculations of finite nuclei, we return to examine the
properties of the neutron PSDs of the 208Pb nucleus. The
quantum numbers of these states and their corresponding
energies obtained for the parameter set NL-SH [22] are
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Table 3. Different quantities corresponding to the states of the 6th neutron PSDs of the 208Pb nucleus. The results have been
obtained with the relativistic parameter set NL-SH [22]. ñr is the number of nodes of the small component F of the Dirac
spinor, l̃ = 2j − l and κ = j(j + 1)− l̃(l̃ + 1) + 1/4. r0i and r0ī are the values of r such that V (r) = 0 in eq. (2) for the physical
states and for the non-physical ones with κ̄ = κ, respectively (in the text we have used the same notation r0 for both r0i and
r0ī). ε0

ī (κ̄), εī(κ̄), εī[εī(κ̄)], and εī[κ̄, εī(κ̄)] = εī(κ̄) + εī[εī(κ̄)], with i = a, b, are the contributions to the SPE εi of the h0,
−V ′/V × κ̄/r, 2εΣ0 − ε2, and h(κ̄, ε) terms in eq. (A.1a), respectively, for the non-physical states Fā,b̄ calculated for κ̄ = κa,b.
Finally, ∆εi = εi − εī(κi), with i = a, b, is the sharp energy contribution to the SPE εi (it represents the energy difference
between the physical and non-physical states for κ̄ = κ).

PSD ñr State (i) l̃ κ̄ = κi r0i r0ī ε0
ī (κ̄) εī(κ̄) εī[εī] εī[κ̄, εī] ∆εi εi

2s1/2 (a) 1 −1 6.69 6.48 −29.7 0.06 −16.5 −16.4 4.72 −41.42
1 2

1d3/2 (b) 1 2 6.54 6.46 −29.7 −0.21 −16.6 −16.8 1.85 −44.67

2p3/2 (a) 2 −2 7.16 6.88 −23.7 −0.27 −13.0 −13.3 6.16 −30.91
2 2

1f5/2 (b) 2 3 6.98 6.92 −23.4 0.14 −12.7 −12.8 1.07 −35.16

2d5/2 (a) 3 −3 7.63 7.26 −17.6 −1.14 −9.71 −10.8 7.83 −20.62
3 2

1g7/2 (b) 3 4 7.43 7.41 −17.5 0.82 −8.68 −7.86 0.61 −24.75

3s1/2 (a) 1 −1 7.77 7.56 −14.3 −0.44 −7.43 −7.87 4.22 −17.96
4 3

2d3/2 (b) 1 2 7.72 7.65 −14.3 0.79 −6.82 −6.03 1.48 −18.87

2f7/2 (a) 4 −4 8.21 7.64 −11.2 −2.55 −6.66 −9.21 9.57 −10.80
5 2

1h9/2 (b) 4 5 8.00 7.98 −11.3 1.78 −4.67 −2.89 0.28 −13.88

3p3/2 (a) 2 −2 8.45 8.06 −7.80 −1.00 −4.08 −5.08 5.03 −7.85
6 3

2f5/2 (b) 2 3 8.37 8.31 −7.81 1.38 −2.96 −1.58 0.71 −8.68

given5 in table 3. This table shows that for the PSDs 4
and 6 the PSS is slightly broken. However, for the PSDs
1–3 and 5 the PSS is quite poorly realized. This behaviour
seems to be in agreement with the fact that the F wave
functions of the PSDs 4 and 6 are much more similar in
shape and size than those of the rest of PSDs (see figs. 2b),
3a)-c)). In what follows we shall try to explain these re-
sults on other grounds than the smallness of |ΣS + Σ0| in
finite nuclei.

6.1 The number of nodes of the G and F functions
and the spin and pseudospin symmetries

Table 3 and figs. 2b) and 3a)-c) show that the F wave
functions of the PSDs 4 and 6 have 3 nodes, whereas those
of the PSDs 1–3 and 5 have only 2 nodes. This difference
is an important property that distinguishes both groups
of PSDs. Furthermore, for the PSDs 4 and 6, the most
relevant part of the F wave functions is developed in a
more inner part of the nucleus than for the PSDs 1–3 and
5. This fact suggests that the κ term in eq. (4), which is
singular in the nuclear surface, affects the F functions of
the PSDs 4 and 6 less than the F functions of the PSDs
1–3 and 5.

A general result, found in all heavy nuclei, is that the
degree of similarity between the functions Fa and Fb in-
creases rapidly with the number of their nodes (ñr). It

5 Similar results are obtained for the NL3 set [23], they will
not be reported here.

seems reasonable to associate this result, mainly, to the
increasing with ñr of the local contribution of the term
proportional to F ′′ in eq. (4), which shows the strongest
dependence on ñr. Thus, the effect of the other terms, in-
cluding the κ term, becomes relatively less important as
F ′′ gets larger values. The κ term always produces impor-
tant changes on F (mainly for r � r0), however, as ñr

increases, its effect on both Fa and Fb functions becomes
more similar. This seems to be an essential point to ex-
plain the observed similarity between the wave functions
Fa and Fb for ñr ≥ 3 in finite nuclei.

Let us consider now the spin-orbit doublets (SODs).
For the two states of a SOD, the degree of similarity of
their big components G (so as the degree of degeneracy
of their energy levels) also increases rapidly with their
number of nodes (nr) (see figs. 5 and 7a), b)). This effect
can be also attributed to a more important role of the
term proportional to G′′ in eq. (3), in relation with the
G-κ term, as nr increases. However, the G-κ term is al-
most perturbative, its effect on the G component is much
smaller than the effect of the F -κ term on the F compo-
nent. Thus, for a SOD, there is always a direct correlation
between the energy splitting of the two partner states and
the similarity of their corresponding G components: the
smaller is the splitting the larger is the degree of similar-
ity. For a PSD this correlation fails. In ref. [17], we have
shown for the 40Ca nucleus that it is possible to get exact
PSS with two quite different functions Fa and Fb. Actu-
ally, in real nuclei, the exact PSS, when it happens, can
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Fig. 7. a) The Gā ≡ Ga and Gb̄ ≡ Gb wave functions, solutions
of eqs. (9) with κ̄ = κa (or κ̄ → κ∓

a , solid line) and κ̄ = κb (or
κ̄ → κ∓

b , dash-dotted line), respectively, for the 2f neutron

spin-orbit doublet of the 208Pb nucleus and the NL-SH set.
The dash-dotted line represents the Gā and Gb̄ functions for
the case κ̄ = 0 (the 2f5/2 state is not normalized to simplify
the figure). b) The same as a) for the 3p neutron spin-orbit
doublet.

be only realized with Fa 
= Fb. For a SOD, due to the per-
turbative character of the G-κ term, the exact degeneracy
of the two partner states is only possible if the G-κ term
itself is switched off.

6.2 Dynamical mechanism of the PSS

To better understand the results discussed for the 208Pb
nucleus, we consider again the non-physical solutions of
eqs. (10) for the neutron PSDs of this nucleus to find con-
ditions for the exact PSS.

In fig. 8, we have represented the SPEs ε correspond-
ing to the two states of the 6th PSD in the 208Pb nucleus,
with κa = −2 and κb = 3, as functions of κ̄. This PSD
shows the best realization of the PSS between the PSDs
given in tables 2 and 3. As we have explained in sect. 5.2
for the 40Ca nucleus, in this case, for the same value of κ̄,
the states ā and b̄ are always degenerate from the math-
ematical point of view but, for κ̄ > κa, this degeneracy

Fig. 8. The non-physical SPEs εā and εb̄ as functions of κ̄,
for the 6th neutron PSD of the 208Pb nucleus (ā = 3p3/2 and
b̄ = 2f5/2) and sets NL-SH (solid line) and NL3 (dashed line).
The physical SPEs corresponding to the same PSD are also
represented for sets NL-SH (dots) and NL3 (stars).

cannot be accepted from the physical point of view. In
any case, both wave functions Fā and Fb̄ are not identi-
cal, but only proportional to each other. Thus, the PSS is
exactly and explicitly realizable in some hypothetical nu-
clear models generating bound states. However, this real-
ization requires, necessarily, the F wave functions to have
different norm for the two pseudospin partners.

In figs. 2a), b), we have drawn, together with the
physical functions Fa and Fb, the two corresponding non-
physical functions Fā and Fb̄ (which satisfy the condition
F (r0) = 0) for κ̄ = κa and κ̄ = κb, for the 40Ca and 208Pb
(PSD 1) nuclei, respectively. It happens that Fb̄ remains
almost unchanged for all PSDs as κ̄ varies from κa to κb.
Thus, it can be still appreciated that Fā (for κ̄ = κa) and
Fb̄ (for κ̄ = κb) remain almost proportional to each other.

Figures 3a)-c) are similar to fig. 2b), but for the PSDs
4–6 of the 208Pb nucleus6. For clarity, we have only drawn
the non-physical function F of the PSD considered cor-
responding7 to κ̄ = κ = κa < 0. The function with
κ̄ = κ = κb > 0 is very similar to the previous one (as
occurs for the PSD 1 in fig. 2b)). Similarly to the 40Ca
nucleus, the drastic difference of the energy of the physical
and non-physical solutions for κ̄ = κ in the 208Pb nucleus
is related with the drastic differences of the correspond-
ing wave functions (see figs. 3c) and 8). These differences
are mainly important for r � r0. It can be also appre-
ciated that the more relevant part of the physical wave
function is shifted through the inner part of the nucleus
with respect to the non-physical one.

6 The results for the PSDs 2 and 3 are quite similar to those
for the PSD 5.

7 The non-physical function F with κ̄ = κa and κ = κb > 0
is exactly proportional to the non-physical function F drawn in
figs. 3a)-c). Thus, the same function can represent both states
although with a different norm. In fig. 3a), for example, the
same curve is used for the two non-physical states 3s1/2 and
2d3/2 with κ̄ = −1, although the latter state is not normalized.
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The main point is that the effect of the κ term, which
allows the drastic discontinuous “transition” from the non-
physical to the physical F functions, maintains a high de-
gree of similarity between the F functions of the two states
of a PSD. Thus, the similarity of Fā and Fb̄, for the same
value κ̄ < κa, still remains, at a qualitative level, for the
physical functions Fa and Fb. At a quantitative level, how-
ever, appreciable differences appear for r � r0. In that
“transition”, the a states with κ < 0 are more strongly af-
fected than the b states with κ > 0, since for the former the
F function takes larger values in the nuclear surface than
for the latter ones. This fact is reflected also in a stronger
modification of the SPE of the a states in comparison with
that of the b ones, as can be appreciated in figs. 6 and 8.

All these features can be understood by examining
carefully eqs. (10). Starting from a physical solution, a
small variation of κ̄, so that κ̄ − κ 
= 0 in the effective
potential ∆W (r), produces an important effect on the F
wave functions near r0, where F must become zero. This
strong constraint on F at r0 produces a shift of F through
the outer part of the nucleus and explains the difference
between the SPEs of the physical and non-physical states:
∆εa,b = εa,b−εā,b̄(κ̄), for κ̄ = κa,b (or κ̄ → κ−

a,b). However,
for values of κ̄ < κ the effect of the ∆W̄ (r) term on F is
quite independent of the κ̄ value, only small changes of F
with κ̄ can be appreciated near r0. Thus, for κa � κ̄ ≤ κb,
Fb̄ remains almost unchanged. In this region, the κ̄ term
is almost perturbative and, consequently, its self-consistent
contribution to the SPE of the b̄ state is proportional8 to
κ̄, as can be seen in fig. 8.

As we shall explain in detail in appendix A, in order to
get εa 	 εb one needs a quasi-compensation between the
total contribution of the terms κ̄, 2εΣ0 and ε2 entering
eq. (10b) to the SPE of a given non-physical state and the
corresponding sharp contribution ∆ε, so that their sum be
almost the same for both states a and b (see figs. 6 and 8).

We have discussed in this subsection the dynami-
cal mechanisms allowing a qualitative explanation of the
quasi-degeneracy of the two states of a PSD and also the
similarity of their respective F wave functions. To under-
stand the different effects of these mechanisms on PSDs
of table 3, we have to take into account also the influence
of the number of nodes ñr of their F functions. As we
have explained in sect. 6.1, the PSS∗ is improved as ñr

increases. Thus, table 3 and figs. 2b), 3a)-c) show that the
degeneracy and the proportionality of the F wave functions
of the two states of a PSD are improved as ñr increases.
This fact is strongly related with a smaller effect of the
F -κ̄ term on Fa and εa as ñr increases (see ∆εa in table 3).

From our discussion in sects. 5 and 6, it seems that
only if the singularity point r0 is far enough from the nu-
clear surface, so that the values Gi(r0) and Fi(r0), for
i = a, b, are small enough, the quasi-equality (or quasi-
proportionality) of the F wave functions of the partners
of a PSD will only occur. Unfortunately, the states weakly

8 Notice that, as the SPE ε changes with κ̄, the contribution
to ε of the 2εΣ0 and ε2 terms, entering eq. (10b) through the
quantity V W , also changes, though, because ε2 is very small,
ε maintains, approximately, its linearity with κ̄.

bound (with large values of r0) have also wave functions
with a slow asymptotic decreasing (this effect being more
notorious for the state a of a PSD with κ < 0 than for
its partner b9). Furthermore, the nuclear force has a small
range and ΣS+Σ0 → 0 very fast as r → ∞. Thus, in prac-
tice, r0 is always relatively small, even for states close to
the continuum, and the non-physical solutions of eqs. (10)
are always significantly different to the physical solutions.
These differences affect to a similar extent the inner part of
the two physical states of a PSD, but they are much more
pronounced for the states a than for the states b for r � r0.
Thus, in real nuclei, the F wave functions of the two states
of a PSD present always appreciable differences for r � r0,
even for weakly bound states (see figs. 2a), b) and 3a)-c)).

7 Summary and conclusions

The Dirac equation is written in two very similar forms,
for both the big G and small F components of the nucleon
spinor, where the potentials V and W play, formally, sym-
metric roles. However, whereas W is always a positive and
finite quantity, V becomes zero at the nuclear surface. This
fact brings about essential differences between the spin-
orbit potential (SOP) and the pseudospin-orbit potential
(PSOP). We have shown that, although the SOP is con-
sidered to be a big quantity in nuclear physics, it behaves,
qualitatively, as a perturbative term. On the contrary, the
self-consistent effects of the PSOP, due to the divergence
of the factor V −1 at the nuclear surface, are very impor-
tant and the PSOP cannot be treated at all pertubatively.

The relation between the splitting of a PSD and the
magnitude of the SOP is analysed in detail. A clear corre-
lation is found between these two magnitudes. For heavy
nuclei, a more accurate PSS would require a stronger SOP.

The relation between the PSS and the magnitude of
|ΣS + Σ0| is also carefully investigated. It is found that
for the PSDs with εa > εb, |εb − εa| decreases as |ΣS +Σ0|
decreases, as is expected. However, for PSDs with εa ≤ εb,
it happens just the opposite. This result contradicts the
interpretation of the PSS as a consequence of the smallness
of |ΣS + Σ0| [5–9].

As the number of nodes nr of the G (or ñr of the F )
functions of the two states of a spin-orbit (or pseudospin-
orbit) doublet increases, the similarity of these G (or F )
functions increases, whereas the splitting of the corre-
sponding doublet decreases. This behaviour is related with
a more important role of the terms containing G′′ (or F ′′)
in eq. (3) (or eq. (4)), with the increasing of nr (or ñr).

We have shown that the G component in eqs. (9) and,
consequently, its corresponding eigenvalue ε behave in a
continuous way as κ̄ (a real number) varies around the
physical value κ. However, the F component in eq. (10)
and its corresponding eigenvalue ε behave discontinuously
as κ̄ varies around the physical value κ. This fact shows
the non-perturbative character of the F -κ̄ term in contrast
to the quasi-perturbative character of the G-κ̄ term.

9 It is worth noting that ∆εi 
 |εi| as εi → 0, for i = a, b,
but, whereas ∆εb → 0 as εb → 0, ∆εa �→ 0 as εa → 0.



454 The European Physical Journal A

We have found that for κ̄ < κa the PSS is exactly satis-
fied for (non-physical) “bound” states. Then, allowing κ̄ to
vary from κ̄ < κa to κa and κb, we show how the physical
states a and b, and their corresponding eigenvalues, are
generated. This enables us to understand the similarity
between the small components of the two states of some
PSDs and their approximate degeneracy. This degener-
acy can be explained as the result of a partial compen-
sation between different contributions, perturbative and
non-perturbative, to the SPE, as the nucleus goes from
the non-physical satates (with κ̄ < κa) to the physical
ones, showing the dynamical character of the PSS.
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of us (L.N.S.) is grateful to the University of Cantabria for hos-
pitality. This work has been supported by the DGESIC grand
BFM2001-1243.

Appendix A. Quantitative analysis of the
relation εa � εb for the SPEs of a PSD

To better understand how the quasi-degeneracy of the two
partners of a PSD is achieved (see figs. 6 and 8), let us
write eq. (10b) as

[h0 + h(κ̄, ε)]F = εF, (A.1a)

where h0 depends neither on κ̄ nor on ε, and

h(κ̄, ε) = −V ′

V

κ̄

r
+ 2εΣ0 − ε2. (A.1b)

If we consider the non-physical Fī function normalized
to the unity, 〈Fī|Fī〉 = 1, for ī = ā, b̄ and a given value of
κ̄, the contributions of h0 and h(κ̄, ε) to the SPE [εī(κ̄)] are
given by ε0

ī
(κ̄) = 〈Fī|h0|Fī〉 and εī[κ̄, ε] = 〈Fī|h(κ̄, ε)|Fī〉,

respectively. We have explained in sect. 6.2 that Fb̄ re-
mains almost unchanged as κ̄ varies from κa to κb. Then,
in the interval κa � κ̄ ≤ κb, ε0

b̄
(κ̄) is almost constant and

εb̄[κ̄, ε] can be calculated approximately in a perturbative
way (i.e., with the Fb̄ corresponding to any value of κ̄ in
that interval). These facts explain the linearity of εb̄ as a
function of κ̄ observed in figs. 6 and 8.

We write the SPE for the i physical state as

εi = εī(κ̄) + ∆εi, εī(κ̄) = ε0
ī (κ̄) + εī[κ̄, εī(κ̄)],

κ̄ = κi, i = a, b, (A.2)

where εī(κ̄) represents the SPE of the ī non-physical state
corresponding to κ̄ = κi (or κ̄ → κ−

i ) and ∆εi is defined
by this equation.

Taking into account that for κ̄ < κa, Fb̄ is propor-
tional to Fā (and consequently εb̄(κ̄) = εā(κ̄)) and that for
κ̄ ≤ κb the effect of the κ̄ term on the non-physical b̄ state
can be considered, approximately, as perturbative (i.e., Fb̄

remains almost independent of κ̄), we can conclude that
ε0

ā(κa) 	 ε0
b̄
(κb). This approximation can be checked using

the results given in table 3 for the 208Pb nucleus. The small

difference between these two energies is only due to the
small difference between Fb̄ (for κ̄ = κa) and Fb̄ (for κ̄ =
κb). If only perturbative effects were considered, the dif-
ference of energy of the two physical states of a PSD would
be given approximately by the difference εā[κa, εā(κa)] −
εb̄[κb, εb̄(κb)]. The results from table 3 show that, for the
PSDs 4–6, |εā[κa, εā(κa)] − εb̄[κb, εb̄(κb)]| is larger than
|εa − εb| and, what is more surprising, the energy differ-
ences, themselves, have opposite signs for all PSDs except
for the first one. All that points out that the origin of the
PSS cannot be attributed to the smallness of the κ term.

Since V (r) < 0 for r < r0, V ′ > 0 in the nuclear
surface and Fā,b̄(r) = 0 for r � r0, we can expect 〈Fā,b̄| −
V ′/V × 1/r|Fā,b̄〉 > 0, at least for the less bound states
for which r0 is larger (and V ′ remains positive10 in the
region where V −1 is big). This is just what happens in
the 208Pb nucleus, where only for the first PSD the mean
value is negative (see values of ε(κ̄) in table 3). Then, we
should have εā[κa, εā(κa)] < εb̄[κb, εb̄(κb)], at least for the
states closest to the Fermi level, as the results of table 3
show for the quantity εī[κ̄, εī], ī = ā, b̄.

Then, since ε0
ā(κa) 	 ε0

b̄
(κb), from eq. (A.2) one can see

that to get an approximate PSS for a PSD in real nuclei,
it is necessary the sharp contribution ∆ε to the SPE to be
larger for the a state than for the b one: ∆εa > ∆εb.

The effects of ∆W (r) on the SPE ε when going from
the physical to the non-physical wave function are more
pronounced for the states a with κ < 0 (than for the
states b with κ > 0), because their F and G components
take more significant values for r � r0 (notice that the G
component of these states of PSDs has one node more than
that of the states with κ > 0 and their outer maximum is
closer to the singularity point). The larger effect produced
by ∆W (r) for κ̄ 
= κ on the a states than on the b ones
is also reflected in the inequality: ∆εa > ∆εb. Thus, the
PSS, when it occurs, is realized because the Dirac equation
generates dynamically the approximation

εā[κa, εā(κa)] + ∆εa 	 εb̄[κb, εb̄(κb)] + ∆εb, (A.3)

which explains the quasi-degeneracy of many pseudospin
partners in finite nuclei11.

Since ∆εa > ∆εb seems to be a common rule and the
inequality ε[κa, εā(κa)] < ε[κb, εb̄(κb)] occurs, at least, for
the states of the PSDs closest to the Fermi surface, it
means that for these states there is a kind of compensation
between the contributions to the SPE of the two terms
involved in these inequalities, which is responsible for a
small splitting of these PSDs.

The quasi-degeneracy of a PSD, when it happens, can-
not be explained only as a result of the similarity of the
two corresponding F wave functions. One should be aware

10 Notice that, generally, V is not a monotonically increasing
function of r (except in the nuclear surface).
11 Considering only the “perturbative contribution”
εī[κi, εī(κi)] of h(κ, ε) to the SPE εi, the splitting of the
PSDs in table 3, except for the first PSD, would exhibit a
sign opposite to the one obtained when all contributions are
included.
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that for two identical F wave functions the energy of the
two states of a PSD would differ, approximately, by the
quantity εā[κa, εā(κa)] − εb̄[κb, εb̄(κb)] which, in some of
the examples shown in table 3, is quite large and, with
the only exception of the first PSD, has the opposite sign
to the quantity εa − εb. Then, to get almost exact PSS
under these circumstances, the Fa and Fb wave functions
must differ from each other in such a way that the quan-
tities ∆εa and ∆εb, together with εā[κa, εā] and εb̄[κb, εb̄],
could satisfy eq. (A.3). The difference between Fa and Fb

that is necessary to get approximate PSS decreases with
the increasing of their number of nodes.

In the 208Pb nucleus, the F wave functions of the 6th
PSD, which is considered as one of the best examples of
PSS, exhibit clear differences for large values of r (see
fig. 3c)). The almost exact degeneracy of the 3p3/2 and
2f5/2 states (see table 3) cannot be explained due to the
smallness of the κ term (as a consequence of the validity
of the (ΣS + Σ0 = 0)-limit) but, rather, due to the fact
that Fa and Fb differ from each other just enough to gen-
erate differences between ∆εa and ∆εb so that eq. (A.3) is
approximately satisfied. In refs. [17,20], one can see more
details of the complicated cancellation of the contributions
to the single-particle energies of the different terms enter-
ing eq. (4) that, in particular, allows the quasi-degeneracy
of the 3p3/2 and 2f5/2 states. It is also shown that this
cancellation, by itself, can explain the approximate de-
generacy observed in the PSDs of the nuclei for which the
functions Fa and Fb, with a number of nodes ñ = 2, differ
from each other appreciably.

When Fa and Fb differ more (or less) than it is neces-
sary to satisfy eq. (A.3), the PSS is not well realized. This
is just what happens, for example, with the states of the
PSDs 1–3 and 5 of the 208Pb nucleus.
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